Detailed Functional Overview of an APl and Workflow Engine for
Scientific Research Computing

Nathan Freeman
Texas Advanced Computing Center
Austin, Texas, USA
nfreeman@tacc.utexas.edu

Richard Cardone
Texas Advanced Computing Center
Austin, Texas, USA
rcardone@tacc.utexas.edu

ABSTRACT

Constructing and executing reproducible workflows is fundamental
to performing research in a variety of scientific domains. Many of
the current commercial and open source solutions for workflow en-
gineering impose constraints—either technical or budgetary—upon
researchers, requiring them to use their limited funding on ex-
pensive cloud platforms or spend valuable time acquiring knowl-
edge of software systems and processes outside of their domain
expertise. Even though many commercial solutions offer free-tier
services, they often do not meet the resource and architectural
requirements (memory, data storage, compute time, networking,
etc) for researchers to run their workflows effectively at scale. Tapis
Workflows abstracts away the complexities of workflow creation
and execution behind a web-based API with a simplified workflow
model comprised of only pipelines and tasks. This paper will de-
tail how Tapis Workflows approaches workflow management by
exploring its domain model, the technologies used, application ar-
chitecture, design patterns, how organizations are leveraging Tapis
Workflows to solve unique problems in their scientific workflows,
and this projects’s vision for a simple, open source, extensible, and
easily deployable workflow engine.

CCS CONCEPTS

« Software and its engineering;

KEYWORDS
workflows, containers, API, HPC

ACM Reference Format:

Nathan Freeman, Joe Stubbs, Richard Cardone, and Christian Garcia. 2023.
Detailed Functional Overview of an API and Workflow Engine for Scientific
Research Computing. In Practice and Experience in Advanced Research Com-
puting (PEARC °23), July 23-27, 2023, Portland, OR, USA. ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/3569951.3593609

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC °23, July 23-27, 2023, Portland, OR, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9985-2/23/07.
https://doi.org/10.1145/3569951.3593609

Joe Stubbs
Texas Advanced Computing Center
Austin, Texas, USA
jstubbs@tacc.utexas.edu

Christian Garcia
Texas Advanced Computing Center
Austin, Texas, USA
cgarcia@tacc.utexas.edu

1 INTRODUCTION

Tapis Workflows is an AP, workflow engine, and set of supporting
services deployed in the Tapis ecosystem [26] designed to enable
the construction and execution of research computing workflows.
It is capable of building, testing, and persisting container images
for scientific applications, running small containerized applications,
executing arbitrary code, and communicating with external entities
via HTTP requests. It is also fully integrated with the suite of
Tapis services, allowing users to run research computing jobs on
HPC infrastructure via the Tapis Jobs API [23], as well as trigger
functions via Abaco [13], a distributed computing, Actor Model-
based functions-as-a-service platform. This paper is organized as
follows: in section 2, we provide an overview of the use-cases that
Tapis Workflows is currently serving, and others that are motivating
the development of new functionality; in section 3, we cover the
tech-stack of Tapis Workflows and the decisions behind choosing
those technologies; in section 4, we discuss source code structure
and style in addition how CI/CD for the project is managed; Section
5 covers important aspects of the project’s data model; In section
6 we discuss the application architecture of the workflow engine
and role of each component in workflow execution; In section 7,
we discuss the methods by which users can trigger workflows; In
section 8, we discuss future features and features currently in the
development pipeline for extending workflow functionality to serve
more general use-cases and improve extinsibility; Finally, in section
9 we give a general overview of the development team’s assessment
on Tapis Workflows’ ability to satisfy the current use-cases followed
by a brief overview of the content covered in this paper.

2 USE CASES

This sections introduces some common use cases for which Tapis
Workflows is currently employed and the details of how organiza-
tions in a wide variety of scientific and engineering domains are
leveraging it to build and run their workflows.

2.1 Continuous Integration/Continuous
Deployment

CI/CD is a common use case served by Tapis Workflows. Generally,

these workflows include building images for containerized scientific

applications, running any built-in programmatic tests to ensure they

function as expected, and pushing them to remote image registries.

https://doi.org/10.1145/3569951.3593609
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3569951.3593609

PEARC °23, July 23-27, 2023, Portland, OR, USA

2.1.1 Tuitus. Tuitus [24], an NSF-funded project at the University
of Texas at Austin, maintains a suite of scientific tools for support-
ing research in Natural Hazard Engineering. One of the aims of the
Tuitus project is to develop a set of CI/CD best practices for appli-
cations designed to run on HPC infrastructure. Tapis Workflows
will be used by Tuitius to build, test, and persist their containerized
scientific applications.

2.1.2 HETDEX. The Hobby-Eberly Telescope Dark Energy Exper-
iment (HETDEX) [17] is an international collaboration between
universities including the University of Texas at Austin, Ludwig-
Maximilians-Universitdt Miinchen, Georg-August-Universitiat Got-
tinge, and Pennsylvania State University, in which the clustering of
galaxies is measured using McDonald Observatory’s Hobby-Eberly
Telescope in an effort to look for potential evolution in dark energy.

The HETDEX group employs Jupyter Notebooks via Jupyter
SCINCO [25] for analysis and visualization of data produced by
this experiment. The underlying image for their Jupyter Notebook
is built using the image building functionality available with Tapis
Workflows and subsequently persisted to a remote image registry.

2.2 ETL Pipelines

ETL Pipelines (extract, transform, load) are applications in which
data is ingested, transformed, then transferred to a final destination.

2.2.1 JPL NEID project. NEID [5] is an astronomical spectrograph
constructed at Penn State for NASA’s Jet Propulsion Laboratory. Its
purpose is to analyze the spectra of nearby stars for perturbations
in order to discover and classify extra solar planets.

As data files are generated by JPL’s NEID spectrograph, they are
transferred to the local inbox—a Tapis System [12]—via a Globus [3]
transfer, and a manifest containing the file paths is generated. Once
manifest files are detected, a request is sent to the Tapis Workflows
API to run the data transformation. The data transformation consist
of running an HPC job via the Tapis Jobs API [23], archiving the
data, and transferring the newly transformed data back to JPL via
Globus.

3 TECHNOLOGIES

In this section, we discuss the technologies upon which Tapis Work-
flows is constructed and the decisions behind choosing those tech-
nologies.

3.1 API

The Tapis Workflows API makes use of Django [22], an open source
Python-based framework for building secure and scalable web ap-
plications. Django was chosen for its ability to integrate with a
variety of database management systems (DBMS) used in other
Tapis projects, its use of object-relational mappers (ORMs) [6] to
facilitate rapid development by enabling access to the data layer
through high-level abstractions in contrast to direct use of the
querying language in code, and built-in security measures for coun-
tering common exploits faced by web-based services (SQL injection,
cross-site request forgery, etc.).

3.1.1 APl Performance. The Tapis Workflows API can perform
under loads approximately five times the average expected number
of concurrent users without degradation of service. Load tests were

Freeman et al.

performed using Locust [18] at a maximum of 500 concurrent users
at a hatch rate 100 users per second for 32,520 requests over 5
minutes. This test resulted in a request failure rate of less than 0.1
percent.

3.2 Message Queue (RabbitMQ)

Tapis Workflows utilizes RabbitMQ [20] for inter-service commu-
nication — namely, requests between the Tapis Workflows API and
the Workflow Engine. The message queue creates a loose coupling
between the Workflows API and Workflow Engine, allowing other
APIs and tools to be developed independently around the Work-
flow Engine. Exchanges on RabbitMQ are also used internally by
the Workflow Engine for scheduling workflows and managing the
workflow execution life cycle.

3.3 Persistence

Due to the relational nature of the Workflow API’s data model,
Tapis Workflows employs MySQL for workflow persistence.

4 PROJECT STRUCTURE, CODE STYLE, AND
CI/CD

In order to promote and simplify open source contribution to Tapis
Workflows, this project has employed a project structure, design pat-
terns, and architectural paradigms found in common use amongst
large and complex open source projects.

4.1 Monorepo

All source code for the services that comprise Tapis Workflows
are contained within a single code repository, called a monorepo
[19]. This has multiple advantages compared to the more common
polyrepo [19] pattern. First, code bases that are housed in a single
repository benefit from the ability to develop and run unit, func-
tional, and integration test suites across services. For example, the
Tapis Workflows API and the Workflow Engine share DAG valida-
tion utilities and various API Gateways used for sending requests to
other Tapis Services. Additionally, it simplifies CI/CD as container
images for each services can be built concurrently as part of a single
deployment.

4.2 Code Style

The Tapis Workflows API and Workflow Engine are written in
Python with a clear, modular design to encourage and facilitate
open-source contributions to the project. This project makes ex-
tensive use of advanced object-oriented design commonly used
in applications developed in languages such as Python, Java, and
C#. Such patterns include Strategy, Builder, Observer, Decorator,
Factory, Singleton/Multiton, and Object Pool.

4.3 Github Actions

CI/CD for Tapis Workflows is managed using GitHub Actions [7]
and configured to build both the API and Workflow Engine images
on push or merge of major branches, run unit and functional tests
for both images, and push them to Dockerhub once all program-
matic tests pass.

Detailed Functional Overview of an APl and Workflow Engine for Scientific Research Computing

Total Requests per Second

Response Times (ms)

PEARC ’23, July 23-27, 2023, Portland, OR, USA

400:08PM 401:17PM 40226PM 4:03:35 PM

Figure 1: Load test with Locust. 32,520 requests over 5 minutes.

4.4 Branching and Image Versioning

This project roughly follows the GitFlow [8] branching model,
maintaining four major branches that correspond to the four envi-
ronments to which Tapis Workflows will be deployed; dev, staging,
test, and release-*. For all non-release branches, the images built for
a deployment are tagged with that branch name. For production re-
leases, the branch is named after the release target version prefixed
with “release-”. When a release branch is pushed, the version is
parsed from the branch name and the image is tagged with the num-
ber that follows “release-"; ex. A branch named “release-1.2.5” will
result in images tagged as the following: tapis/workflows-api:1.2.5
and tapis/workflows-pipelines:1.2.5.

5 DATA MODEL

This section covers the fundamental entities of the Tapis Workflows
API and how they relate to each other.

5.1 Tasks

Tasks are the units of work performed in a workflow. There are six
different types of tasks, each exposing unique functionality that
performs work commonly found in advanced research computing
workflows. Each of these tasks’ capabilities will be discussed in
section 6.5. Tasks in a pipeline are modeled as nodes in a directed
acyclic graph (DAG) in which their relationships, i.e. their depen-
dencies, determine the order of their execution, and where tasks
without dependencies are the first to be executed.

5.2 Pipelines

Pipelines are collections of tasks and a set of rules for governing
the behavior and life cycle of a workflow. On this object, users can
modify aspects of the execution profile. These include the max exe-
cution time or TTL of a pipeline, the task invocation mode which
controls whether tasks are executed concurrently or serially, max

retries which specifies the number of times a pipeline can be rerun
after failure, and duplicate submission policy which determines
whether the Workflow Engine should terminate the current dupli-
cate workflow, cancel the incoming workflow, or run the duplicate
workflows concurrently.

5.3 Groups

A Group defines a set of Tapis users that own workflow objects
such as pipelines and tasks. All members of a group are capable of
creating and running workflows owned by that group. Groups must
have a unique id within the Tapis tenant to which they belong.

5.4 Identities

Identities are mappings of Tapis users to identities which are ex-
ternal to the Tapis framework. These identities can be used as a
replacement for providing raw credentials in workflow definitions
— specifically those required by the image build task (discussed in
section 6.5.1) — when building images from source code in private
repositories and pushing the resultant image to private registries.
Additionally, identities are used to validate requests from external
entities that trigger workflows such as Github Actions or Gitlab
CI/CD.

The Tapis Workflows API leverages the Tapis Security Kernel
(SK) [11] — backed by HashiCorp Vault [4] — to encrypt and store
the credentials. Once the credentials for an identity are persisted,
they will only ever be shared between the Tapis Workflows API
and the Workflow Engine.

5.5 Pipeline Runs & Task Executions

Pipeline Runs and Task Executions are objects that represent the
status of Pipelines and Tasks as they are being processed by the
Workflow Engine. These objects can only be created by the API
during the runPipeline operation, or the Workflow Engine as a

PEARC °23, July 23-27, 2023, Portland, OR, USA

workflow runs through the various stages of the execution life
cycle.

6 WORKFLOW ENGINE

The Workflow Engine is composed of seven core components. The
Workflow Server, Worker Pool, Workflow Executor, Task Executors,
Event Exchange, Middlewares, and Reactive State. This section cov-
ers the roles of each component in controlling workflow execution.

6.1 Workflow Server

The Workflow Server is the entry point for the Workflow Engine.
It is responsible for establishing and maintaining connection with
the message queue (RabbitMQ) and its exchanges (The Inbound
Exchange, Retry Exchange, and Dead-letter Exchange), managing
the Workflow Executors via the Worker Pool, and handling request
idempotency.

6.2 Worker Pool

The Worker Pool is an in-memory collection of Workflow Executor
instances organized as a double-ended queue (deque; pronounced
“deck”). The number of workers, and thus, number of Workflow
Executors instantiated are determined by configurations specified
in the deployment files of the Workflow Engine. The Worker Pool
is elastic, meaning users can specify a minimum and maximum
number of Workers; as requests come in, additional Workers can
be added to the pool at runtime up to the limit specified in order to
accommodate increased request load.

Worker concurrency is implemented via threads. This was cho-
sen over multi-processing due to the convenience of shared memory
and constraints imposed by request idempotency (discussed in sec-
tion 6.7.2).

6.3 Workflow Executor

The Workflow Executor is the primary workhorse of the Workflow
Engine. Each Workflow Executor is capable of processing a single
workflow submission at a time. It is responsible for Task Executor
dispatching and threading, task dependency management, process-
ing and validating their inputs and outputs, and maintaining the
Event Exchange to which Events can be published and subscribed
to by various middlewares that handle requests to remote backends
and task result archivers.

As tasks are executed by the Workflow Executor, their results are
stored on an NFS-server and operated upon by subsequent tasks.
Once a workflow has reached a terminal state, all of the results are
deleted.

6.3.1 Hooks. The life cycle of a workflow execution
is managed through a series of five hooks; on_start,
on_change_ready_task, on_change_state, on_task_terminal_state,
and on_pipeline_terminal_state.

6.3.1.1 _on_start. The on_start hook is called at the beginning
of workflow execution. This hook is responsible for task DAG
validation, preparing the file system structure to organize task
results and logs, determining which tasks to execute initially, and
populating the ready_tasks array with those initial tasks.

Freeman et al.

6.3.1.2 on_change_ready_task This hook runs when new tasks
are appended to the ready_tasks array. For all tasks in the
ready_tasks array, Task Executors are dispatched according to their
type and the Workflow Executor awaits their terminal state.

6.3.1.3 _on_change_state This intermediate hook is called when
Task Executors mutate state in the Workflow Executor. It is reg-
istered with a state locking mechanism (Reactive State, covered
in section 6.4) that enables a Task Executor to perform operations
over shared state between the Workflow Executor and other Task
Executors in a thread-safe manner.

6.3.1.4 _on_task terminal state When a task reaches a terminal
state (succeeded, failed, or terminated), the
_on_task_terminal_state hook will clean up the temporary
resources created during the task’s execution and populate
the ready_tasks array with new tasks, thereby triggering the
_on_change_ready_tasks hook and processing the next tasks. This
occurs recursively until all tasks have entered a terminal state or
the workflow reaches its max exec time.

6.3.1.5 _on_pipeline_terminal_state This is the final hook which
is called once all tasks in a workflow have either completed, or a
task fails causing the workflow to fail. This hook is responsible for
cleaning up temporary resources created by the Workflow Executor,
and triggering middleware responsible for archiving and reporting
the status of workflows and their tasks.

6.4 Reactive State

A single Reactive State object is instantiated per Workflow Execu-
tor for storing and mutating state subject to potential race condi-
tions—i.e. state accessed by the Workflow Executor and Task Execu-
tors running in multiple threads. This object has two responsibilities.
The first is to lock access to the state from other threads when values
are set or fetched. The second is to dispatch hooks registered with
the Reactive State when values specified in the hook’s dependency
list are accessed by Task Executors. These hooks allow methods on
the Workflow Executor to be called during the state lock, ensuring
there are no race conditions for that particular dependency. Once
all hooks for that value are called, the state is then released and
other threads can access it once again.

6.5 Task Executors

Task Executors instances are spawned by the Workflow Executor to
handle the execution of individual tasks based on their type. There
are six different types of tasks and a corresponding Task Executor
for each. This section covers the unique functionality that they
bring to Tapis Workflows.

6.5.1 Image build. Containerization is an important paradigm for
packaging and running scientific applications in a reproducible
manner. Tapis Workflows leverages existing image building tech-
nologies such as Singularity [10] and Kaniko [15] to build both
Singularity and Docker images from source code and persisting
those images to container registries or in local workflow storage.
The Image Build Task also has the capability to convert Docker
images into SIF files.

The Image Build task is defined in two steps. First is the “con-
text”, i.e. the source of the image to be built. This can be a public
or private repository on a source control platform, or a registry

Detailed Functional Overview of an APl and Workflow Engine for Scientific Research Computing

PEARC ’23, July 23-27, 2023, Portland, OR, USA

HPC
Systems
6.b b.c == 6.c.1
) SM=
RabbitMQ “nn
- 4
gﬂf{: §l Workilow Server / / |
o_o
3 . 7 y -
Warkflow Executor(s) / / Event Middlewares |
6 8
o 1 Exchange? Backends Archivers
H —
% External APls < > 0 i i <
—

i
=

NFS Server

Figure 2: Workflow Engine Architectural Overview

on Dockerhub. For private repositories, the user must provide the
credentials necessary to access it when defining the context. The
credentials (username and access token) can be furnished directly
on the context definition itself or by providing the UUID of a Work-
flow Identity (mentioned in section 5.4).

The second step is defining the “destination”, i.e. where the re-
sultant image is to be persisted. Like the context, credentials or
a Workflow Identity will be required to push images to a private
registry. Users can also specify a local destination. This useful if
users desire to test their images before pushing them to a final
remote repository.

6.5.2 Request. Requests enable users to make HTTP requests to
applications external to the Workflow Engine. Outputs from com-
pleted tasks can be sent from the Workflow Engine to trigger ad-
ditional workflows that run on external resources. Alternatively,
a Request task can fetch data from an external resource to be pro-
cessed as a part of a workflow execution.

6.5.3 Container run. Container Run task offers a way for users to
run small containerized applications (less than 4CPUs and 16GB
of memory) run as a Job [14] on the Tapis Kubernetes [16] cluster.
This task is intended for applications that do not need to make use
of high performance computing infrastructure. This task can be

executed in one of two modes which is specified by a boolean value
in the “poll” property of a workflow definition.

When set to “true”, the task executor queries the Kubernetes API
for the job status until some terminal state (Failed or Completed)
is reached. If the container exits with a “Completed” status, the
stdout of the container is validated to ensure that it conforms to the
output specified in the workflow definition (if defined). If an output
produced by the container fails validation, the task execution is
marked as failed. If the job concludes with status “Failed”, the task
execution will also be marked as failed and all tasks that are depen-
dent on it will not be executed. When set to “false” the container
will run in the background and the Kubernetes Job’s status will be
ignored.

6.5.4 Function. Function tasks offer a way for users to run arbi-
trary code in the language and runtime environment of their choice.
These environments are furnished with the workflow context—a
pre-loaded object that contains the current state of the Workflow
Executor—which includes the outputs of previous tasks and can be
accessed via the “ctx” constant inside the user-defined code. The
user-defined code is provided via the "code" property of the task
definition and is expected to be a base64-encoded string.
Functions are a specialized set of the container run type with
restrictions. The pods spawned by these tasks are network isolated

PEARC °23, July 23-27, 2023, Portland, OR, USA

as well as restricted from accessing the Kubernetes API via Cluster
Roles (CR) and Cluster Role Bindings (CRBs). Additionally, the
Kubernetes service token mounted into pods by default is deleted
to ensure access to the Kubernetes API is impossible. The runtimes
available for use are node19, python3.9, and python2.7. Support for
more runtimes will be developed on an as-needed basis.

6.5.5 Tapis-actor. The Tapis Actors API, also known as Abaco [13],
is a distributed function-as-a-service platform deployed as a part
of Tapis. The Workflow Engine’s integration with Abaco allows
users to extend their existing actor pipelines with additional tasks
in Tapis Workflows.

Like the Function task, actors can be polled until they reach a
terminal state, or triggered and run in the background. Since actors
can be linked, the workflow engine will poll each actor recursively
until all linked actors have finished running. If a single actor ends
in a failed terminal state, the task will also fail.

6.5.6 Tapis-job. The Tapis Jobs APl is a service with which users
can run containerized scientific applications on high performance
computing systems. Job submissions are defined as JSON objects on
the tapis_job_def property of the task object and submitted directly
to the Jobs API during workflow execution. Like other tasks, the
submitted Tapis Job can be polled until it reaches a terminal state.

6.6 Middleware

Each Workflow Executor is furnished with a set of middlewares that
respond to events generated throughout the life cycle of a workflow.
These middlewares come in two types: Backends and Archivers.
Backends are used to send data to remote entities regarding status
of workflow and task executions and Archivers are used to persist
the results generated by the tasks to external entities such as a
Tapis System or an S3 bucket.

6.6.1 Event Exchange. The Event Exchange is the mechanism by
which a Workflow Executor publishes updates about its current
stage of execution. These include pipeline statuses (ACTIVE, COM-
PLETED, FAILED, TERMINATED, etc), and task statuses (ACTIVE,
COMPLETED, FAILED, TERMINATED, SKIPPED, etc). When pub-
lished, each event contains the state of the Workflow Executor at the
moment it was published. This enables independent components,
such as the aforementioned middlewares, to perform operations
over that state and communicate that data with external entities.

6.7 Workflow termination

There are a number of challenges to managing state in applications
that share memory between a variable number of dynamically-
generated nested threads. The Workflow Executor components in
the Workflow Engine employ a combination thread locking and
method interception (aka action filters) via decorators to ensure
that state accessed in the various stages of workflow execution
remains consistent in order to avoid race conditions.

6.7.1 Termination decorator. The termination decorator [1] is a
function that is called before and after life-cycle methods in a Work-
flow Executor. This is implemented as a decorator factory that can
be passed an optional clean-up function. When a life-cycle method
is called, the Workflow Executor is checked for a termination status.

Freeman et al.

If it is "terminated” or "terminating”, that life-cycle method will be
skipped and the optional clean-up function will be invoked to roll-
back the state of the executor in preparation for the next workflow
execution.

6.7.2 Request Idempotency. In order to track and handle duplicate
requests to the Workflow Engine, an idempotency key is created
and assigned to each workflow submission. This idempotency can
either be directly supplied by the user in a workflow request via
the "idempotency_key" property, or constructed according to the
unique constraints specified by a property of the same name. These
instructions are an ordered list of properties and selectors that,
when combined, form the idempotency key.

When a duplicate request is detected, the newly submitted work-
flow will be governed in accordance with the current running work-
flow’s duplicate submission policy. There are three policies avail-
able for handling duplicate requests. "ALLOW" permits the new
workflow to run in parallel with the current workflow, "TERMI-
NATE" terminates the current workflow, and "DENY" discards the
new workflow submission. Support will also be added for a "DE-
FERRED" policy which the new request will be placed in a special
queue in which it will wait for the current workflow to reach a
terminal state before running.

7 TRIGGERING WORKFLOWS

In this section, we will discuss the different methods available
for triggering workflows and how to modify workflow execution
behavior through the use of directives.

7.1 Tapis Workflows API

The most direct way to trigger a workflow is directly through the
Tapis Workflows APL This is done via POST request to the “run-
Pipeline” operation. In the request body, users can specify directives
which enable users to override the default behaviors of the work-
flow. These directives will be discussed in a later section.

7.2 TapisUI

A recent addition to the Tapis framework, a front end web interface
called TapisUI [21], enables users to make requests to core Tapis
services—in addition to the Workflows API-in the browser.

7.3 Tapipy

Tapipy is the Python SDK used by both developers and users for
making API calls to the full suite of Tapis services, including the
Tapis Workflows APL It utilizes each service’s OpenAPI specifica-
tion [9] to dynamically generate methods on a Tapis client object
that correspond to all possible operations exposed by each of the ser-
vices APIs. With this tool, users can develop applications or scripts
that integrate with the Tapis Workflows API and other services to
programmatically submit and run workflows.

7.4 Source control platforms

Users may also trigger their workflows with webhook notifications
from source control platforms such as Github Actions and Gitlab
CI/CD [2]. Using the template provided in the Tapis Workflows

Detailed Functional Overview of an APl and Workflow Engine for Scientific Research Computing

documentation, users can set up webhook notifications on push or
merge.

7.5 Overriding workflow execution behavior

In some scenarios, some properties of workflows or tasks will need
one-off modifications in order to accommodate a special circum-
stance or requirement under which they will be executed. For ex-
ample, in an image build task, a user may need to tag an image with
a different tag than the one defined in the workflow. This is made
possible through the use of directives. Directives are commands
sent along with a workflow submission that instruct the workflow
engine to modify certain properties of a workflow definition before
or during its execution. In the use-case mentioned previously, the
user would specify a "custom_tag" directive in addition to the new
value they would like to use; ex. "v1.2.3" instead of "latest".

Directives leveraged in two ways. The first is by specifying a
"directives" property in a workflow submission request. This prop-
erty is an array comprised of strings that conform to the required
syntax. Using the example above in which a user wants to tag the
image with the new value "v1.2.3", the string value of that directive
would be "custom_tag:v1.2.3". The second way to specify directives
is by adding a special string to the end of a commit message on a
commit that will trigger a workflow. These directives must follow
the same syntax as before with additional constraints. All directives
must be inside of a single set of square brackets and separated by a
pipe character.

8 FUTURE WORK

This project plans to expand in scope to satisfy the functional
requirements of a broader spectrum of use cases in order to be
more generally useful to the scientific and research computing
communities. This section further elaborates on the vision of this
project and how it plans realize that vision through a more flexible,
extensible architecture and robust feature set.

8.1 Plugin architecture & Extensibility

One of the visions for this project is to provide a workflow engine
that is implementation agnostic, extensible, and generally useful
across many different domains and computing workloads. This can
be accomplished through a plugin-based architecture against which
software engineers can develop their specific implementations for
task execution, archiving, and backend notification systems.

As explained previously, workflow and task executors operate
on a publish-subscribe model in which events are published by
core components of the workflow engine. These events are sub-
scribed to, and consumed by, various middlewares such as back-
ends and archivers. Currently, the workflow engine and certain
middlewares—specifically, the Tapis backend and Tapis System
archiver—are tightly coupled, forcing an implementation that will
not be used in deployments that do not make use of the Tapis
framework.

We plan to extract these middlewares and convert them into
separate Python packages. These packages can then be enumerated
in the workflow engine’s deployment configurations and installed
at runtime as part of the engine’s start up procedure. The interface

PEARC ’23, July 23-27, 2023, Portland, OR, USA

we design will serve as an example to other developers who need to
develop their own implementations of core workflow components.

8.2 Imperative workflows

Thus far, this project has focused solely on supporting simple,
declarative workflows, as conditionality of task execution is gener-
ally more appropriately handled in the application logic of a task.
However, to say that taskB fails because taskA erroneously pro-
duced a result with a value that falls outside of expected range or
taskB may not semantically accurate and complicates debugging
failed workflows. Additionally, there are many use cases in which
it would be useful for tasks to be dynamic, such as when a task per-
forming work on a variable amounts of data produced by previous
tasks. For such cases, we plan to support conditional expressions in
task definitions as well as workflow-modifying functionality to be
used inside of those expressions in addition to exposing the same
functionality within the application logic of "function" type tasks.

8.2.1 Conditional Tasks. In some cases, a task may become ren-
dered redundant or ineffectual by a previous task’s output but not
necessary for the continued successful execution of a workflow. In
such cases it may be desirable to skip such a task. This use case will
be supported by implementing an "if" property in conjunction with
a set the special functions and operators (covered in section 8.2.2).
If the conditional expression defined in this property evaluates to a
boolean "true" or can be coerced into such, the task will run. If it
evaluates to a false-y value, the task will be skipped. For cases in
which a task is skipped and one or more tasks are dependent on it,
the workflow will fail.

8.2.2 Special functions. Task definitions will be further extended
to include the use of macros and comparison operators inside of the
conditional expressions mentioned above. These functions would
enable sub-string checking, type validation, and environment vari-
able inclusion.

9 CONCLUSION

Tapis Workflows has demonstrated that it is a viable workflow
management platform that can support a wide variety of use cases
for advanced research computing pipelines in the Tapis ecosystem.
Development will continue on both software features and orga-
nizational processes in an effort make the platform more general
purpose and open-source friendly. In this paper, we covered the
real-world scientific implementations of Tapis Workflows, the API
data model, tech stack, and Workflow Engine architecture.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-
ence Foundation Office of Advanced CyberInfrastructure, the Tapis
Framework:[1931439 and 1931575] and Tuitus [2229702]

REFERENCES

[1] [n.d.]. Decorator Pattern. https://www.dofactory.com/net/decorator-design-
pattern

[n.d.]. Gitlab CI/CD. https://docs.gitlab.com/ee/ci/introduction/

[n.d.]. Globus. https://docs.globus.org/api/transfer/overview/#overview
[n.d.]. HashiCorp Vault. https://www.vaultproject.io/
[n.d.].

[2]
[3]
[4]
[5] NEID (pronounced NOO-id). https://neid.psu.edu/what-is-neid/

https://www.dofactory.com/net/decorator-design-pattern
https://www.dofactory.com/net/decorator-design-pattern
https://docs.gitlab.com/ee/ci/introduction/
https://docs.globus.org/api/transfer/overview/#overview
https://www.vaultproject.io/
https://neid.psu.edu/what-is-neid/

PEARC °23, July 23-27, 2023, Portland, OR, USA

3

=

[7

[

[9

=

[10

[11]
[12]
[13]
[14]
[15]

[16]
[17]

[n. d.]. Object Relation Mappers (ORMs). https://www.fullstackpython.com/object-
relational-mappers-orms.html

[n.d.]. Understanding Github Actions. https://docs.github.com/en/actions/learn-
github-actions/understanding-github-actions

2010. A successful Git branching model. https://nvie.com/posts/a-successful-git-
branching-model/ Last access: 2023-02-13.

2017. OpenAPI Specification. https://swagger.io/specification/ Last access:
2023-02-13.

2019. Introduction to Singularity. https://docs.sylabs.io/guides/3.5/user-guide/
introduction.html Last access: 2023-02-13.

2019. Tapis Security Kernel. https://tapis.readthedocs.io/en/latest/technical/
security.html Last access: 2022-4-1.

2019. Tapis System. https://tapis.readthedocs.io/en/latest/technical/systems.html
Last access: 2023-2-13.

2020. Actors. https://tapis.readthedocs.io/en/latest/technical/actors.html Last
access: 2022-3-31.

2020. Jobs. https://kubernetes.io/docs/concepts/workloads/controllers/job/ Last
access: 2022-3-31.

2020. Kaniko. https://github.com/GoogleContainerTools/kaniko Last access:
2022-03-31.

2020. Kubernetes. https://kubernetes.io/ Last access: 2022-3-31.

2021. The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Survey
Design, Reductions, and Detections. https://ui.adsabs.harvard.edu/abs/2021Ap]J...

(18]
(19]

[20]

[21]
[22]
[23]
[24]

[25]

[26]

Freeman et al.

923..217G/abstract Last access: 2022-04-05.

2021. Locust Documentation. https://docs.locust.io/en/stable/what-is-locust.html
Last access: 2023-02-28.

2021. Monorepo vs. Polyrepo. https://github.com/joelparkerhenderson/monorepo-
vs-polyrepo Last access: 2022-03-31.

2021. RabbitMQ. https://docs.informatica.com/integration-cloud/application-
integration/current-version/rabbitmg- connector-guide/introduction-to-
rabbitmgq-connector/rabbitmq-overview.html Last access: 2023-02-13.

2021. Tapis UI - A Rapid Deployment Serverless Science Gateway Built on the Tapis
APIL https://zenodo.org/record/5570569 Last access: 2023-02-13.

2022. Django Web Framework. https://developer.mozilla.org/en-US/docs/Learn/
Server-side/Django/Introduction Last access: 2023-02-13.

2022. Tapis Jobs APIL https://tapis.readthedocs.io/en/latest/technical/jobs.html
Last access: 2022-03-31.

2022. Tuitus: Award Abstract. https://www.nsf.gov/awardsearch/showAward?
AWD_ID=2229702&Historical Awards=false Last access: 2023-02-13.

Joe Stubbs et al. 2020. Integrating Jupyter into Research Computing Ecosystems.
Proceedings of the Practice and Experience on Advanced Research Computing,
PEARC 2020.

Joe Stubbs, Richard Cardone, Mike Packard, Anagha Jamthe, Smruti Padhy, Steve
Terry, Julia Looney, Joseph Meiring, Steve Black, Maytal Dahan, Sean Cleveland,
and Gwen Jacobs. 2020. Tapis: An API Platform for Reproducible, Distributed
Computational Research. (2020). submitted.

https://www.fullstackpython.com/object-relational-mappers-orms.html
https://www.fullstackpython.com/object-relational-mappers-orms.html
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
https://swagger.io/specification/
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://docs.sylabs.io/guides/3.5/user-guide/introduction.html
https://tapis.readthedocs.io/en/latest/technical/security.html
https://tapis.readthedocs.io/en/latest/technical/security.html
https://tapis.readthedocs.io/en/latest/technical/systems.html
https://tapis.readthedocs.io/en/latest/technical/actors.html
https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://github.com/GoogleContainerTools/kaniko
https://kubernetes.io/
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..217G/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..217G/abstract
https://docs.locust.io/en/stable/what-is-locust.html
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo
https://github.com/joelparkerhenderson/monorepo-vs-polyrepo
https://docs.informatica.com/integration-cloud/application-integration/current-version/rabbitmq-connector-guide/introduction-to-rabbitmq-connector/rabbitmq-overview.html
https://docs.informatica.com/integration-cloud/application-integration/current-version/rabbitmq-connector-guide/introduction-to-rabbitmq-connector/rabbitmq-overview.html
https://docs.informatica.com/integration-cloud/application-integration/current-version/rabbitmq-connector-guide/introduction-to-rabbitmq-connector/rabbitmq-overview.html
https://zenodo.org/record/5570569
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://tapis.readthedocs.io/en/latest/technical/jobs.html
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2229702&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2229702&HistoricalAwards=false

	Abstract
	1 Introduction
	2 Use Cases
	2.1 Continuous Integration/Continuous Deployment
	2.2 ETL Pipelines

	3 Technologies
	3.1 API
	3.2 Message Queue (RabbitMQ)
	3.3 Persistence

	4 Project Structure, Code Style, and CI/CD
	4.1 Monorepo
	4.2 Code Style
	4.3 Github Actions
	4.4 Branching and Image Versioning

	5 Data Model
	5.1 Tasks
	5.2 Pipelines
	5.3 Groups
	5.4 Identities
	5.5 Pipeline Runs & Task Executions

	6 Workflow Engine
	6.1 Workflow Server
	6.2 Worker Pool
	6.3 Workflow Executor
	6.4 Reactive State
	6.5 Task Executors
	6.6 Middleware
	6.7 Workflow termination

	7 Triggering workflows
	7.1 Tapis Workflows API
	7.2 TapisUI
	7.3 Tapipy
	7.4 Source control platforms
	7.5 Overriding workflow execution behavior

	8 Future work
	8.1 Plugin architecture & Extensibility
	8.2 Imperative workflows

	9 Conclusion
	Acknowledgments
	References

